

GPU Computing and General Purpose Computation on GPUs

Winter Term 2013 Kick-Off Meeting 23 October 2013

Anton S. Kaplanyan, Gregor Mückl and Christoph Schied Computer Graphics Group Karlsruhe Institute of Technology

Evolution of GPUs

NV1

1 Million 22 Million

2004 2005 2003 GeForce 7 63 Million 130 Million 222 Million 302 Million 754 Million Transistors Transistors Transistors Transistors Transistors Transistors

2008 **GeForce GTX 200** 1.4 Billion **Transistors**

2010 **GeForce GTX 400 3** Billion Transistors

2006

GeForce 8

Data and the images courtesy of David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf

Karlsruhe Institute of Technology | IBDS | CGG

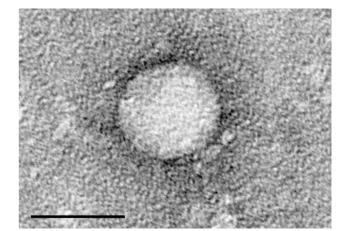
Evolution of GPUs

Stunning evolution of entertainment graphics...

...but GPUs can be used for far more than "just" graphics.

GPU Computing: Example #1 Mutation modeling of the Hepatitis C Virus (HCV)

HCV


- Major cause of liver diseases worldwide.
- Difficult to study viral functions and drug resistance.
- BUT: the mutation follows specific rules that can be modeled
- Implementation on the GPU: JACKET, MATLAB®

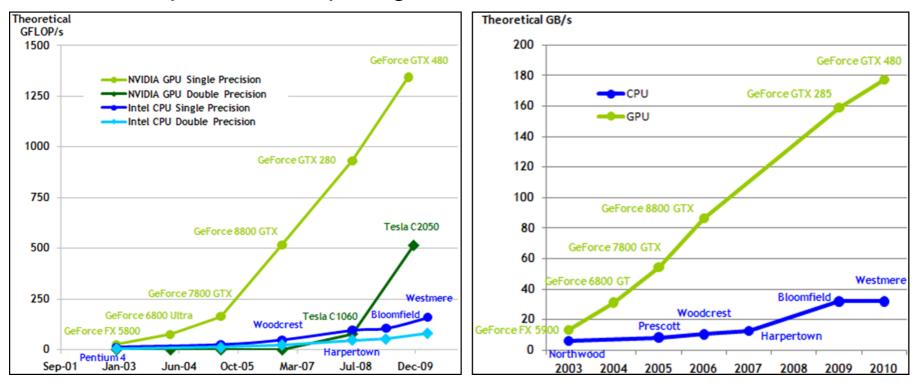
	Days	Hours	X speed up	HW cost	X \$ spent	Relative P-P
Workstation-CPU Only	39	936		\$2,000		
Workstation-CPU & GPU		22.5	41.6	\$5,000	2.50	1664.00%
Compute Cluster		5	187.2	\$250,000	125	149.76%

More about this project at http://www.accelereyes.com/examples/virus_detection_hepatitis_c

Karlsruhe Institute of Technology | IBDS | CGG

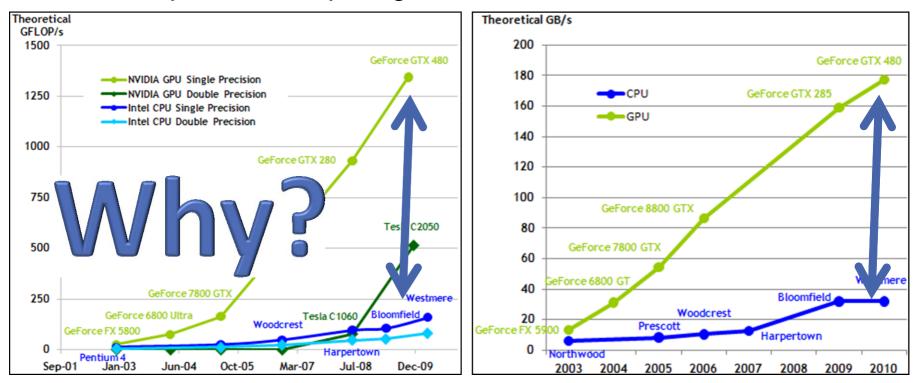
GPU Computing: Example #2 Real Time 3D Fluid and Particle Simulation and Rendering

3D fluid solver in CUDA


• CPU \rightarrow GPU speedup: 40x

GPU Computing

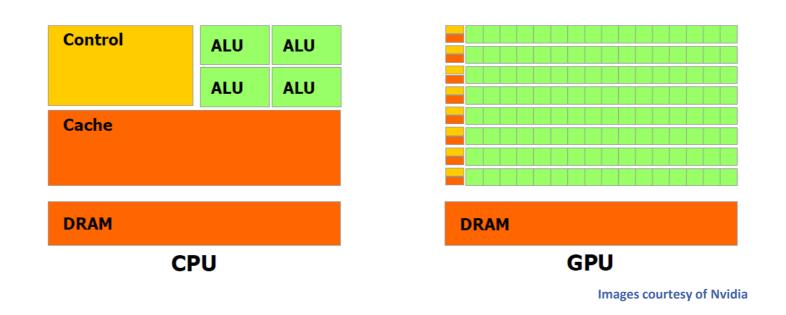
Evolution of parallel computing architectures



Fact: 10% of the top 500 supercomputers are GPU-accelerated

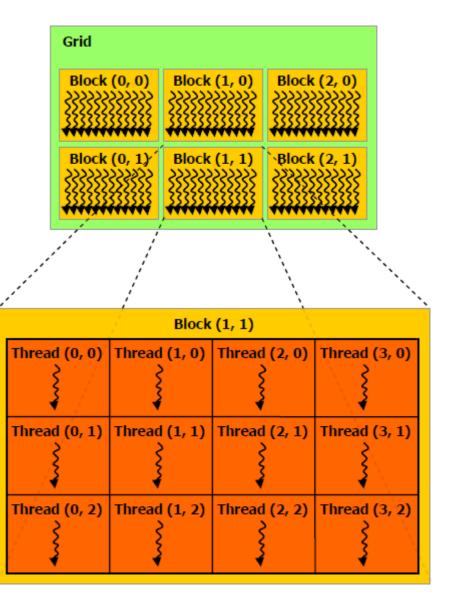
GPU Computing

Evolution of parallel computing architectures


Fact: 10% of the top 500 supercomputers are GPU-accelerated

Images courtesy of Nvidia

GPU Architecture


- Task Parallelism vs. Data Parallelism
- Modern GPUs: highly data parallel suitable, compute-intensive problems

GPU Architecture

- Hardware Multithreading
 - Many-core architecture
 - Thousands of lightweight threads
 - In-order execution, cheap flow control
 - Latency is hidden by the raw number of threads.

Images courtesy of Nvidia

OpenCL

- Open Computing Language
 - cross-platform standard for computing on heterogeneous platforms
 - maintained by Khronos Group (OpenGL, OpenAL)
 - introduced at SIGGRAPH 2008

OpenCL SDK

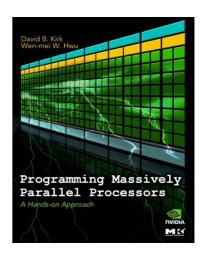
From **NVIDIA**:

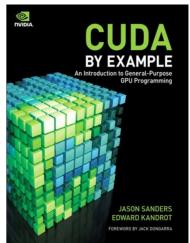
- <u>http://developer.nvidia.com</u>
 - 1. Download the developer driver
 - 2. Download the CUDA toolkit
 - 3. Download the GPU Computing SDK (optional, but worth it)

From **ATI**:

- <u>http://developer.amd.com</u>
 - 1. Download Accelerated Parallel Processing (APP, formerly ATI Stream)

Read the documentation and additional materials at vendor's websites!


Recommended Literature


Programming Massively Parallel Processors A Hands on Approach David B. Kirk, Wen-mei W. Hwu Morgan Kaufmann, 2010

CUDA by Example: An Introduction to General-Purpose GPU Programming Jason Sanders, Edward Kandrot Morgan Kaufmann, 2010

The OpenCL Specification

Khronos Group http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

People

Anton S. Kaplanyan Room 141 anton.kaplanyan@kit.edu Gregor Mückl Room 145 gregor.mueckl@kit.edu

Christoph Schied Room 136 christoph.schied@kit.edu

	GPU Computing	GPGPU	
Credits:	4 SWS	2 SWS	
Workload:	 4 assignments + 1 free-style 	4 (reduced) assignments	
Requirements:	 each individual assignment: at least 40% all assignments in total: at least 50% otherwise failed! 		

	GPU Computing	GPGPU	
Points:	 20 points for each assignment 100 in total (50 to pass) 	 20 points for each assignment 80 in total (40 to pass) 	
Evaluation:	 Assignments must be submitted to our submission system Assignments must be presented by the author (in person) Presentations will be held in ATIS computer pool Make sure your code compiles and runs there! You can also use your own laptop. 		
Grading:	Graded!	Pass/not pass	

	GPU Computing			GPGPU
	Min Points	Max Points	Grade	
	96	100	1.0	
	91	95	1.3	
	86	90	1.7	
	81	85	2.0	
	76	80	2.3	$\wedge \Rightarrow$
	71	75	2.7	ਫ਼ੋਮ ਉੱਟ
	66	70	3.0	
	61	65	3.3	•
Grading:	56	60	3.7	
Crading.	50	55	4.0	
	0	49	FAIL	

Assignment #1

GPU Computing	GPGPU	
 Add two vectors of integers (one in reverse order) (Efficiently) rotate a matrix of numbers 		
ATIS computer pool (evaluation)		
 In two weeks (6.11.) 12:00 	 In two weeks (6.11.) 11:30 	
	 Add two vectors of intege (Efficiently) rotate a matrix ATIS computer pool (eval In two weeks (6.11.) 	

Assignment #2 – #5

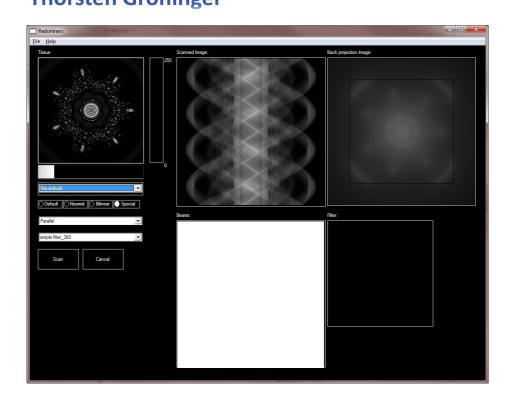
	GPU Computing	GPGPU	
Topics:	 #2: Parallel algorithms (parallel reduction, prefix sum) #3: Image filtering (discrete convolution) #4: Particle systems, cloth simulation 		
	#5: Freestyle		

Submitting your solution

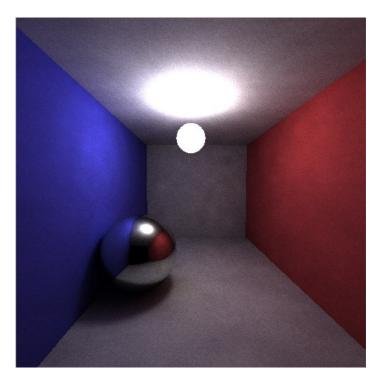
- Upload your solutions to the CG Submission submit.ibds.kit.edu
- Sign up if you do not have an account yet
 In case of troubles, send us an e-mail

Late delivery is penalized!

- deadlines are strict, can be extended only in emergency cases
- -2 points/day after the deadline
- < 8 points for **any** assignment \rightarrow you fail the course!

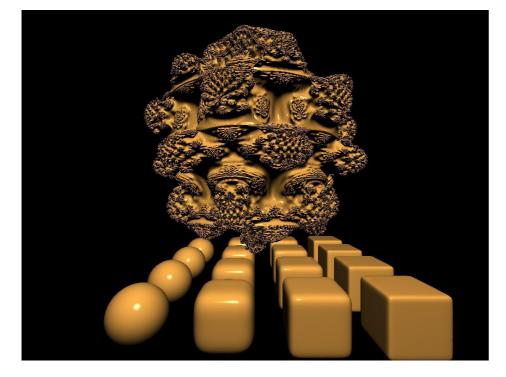

Further Information

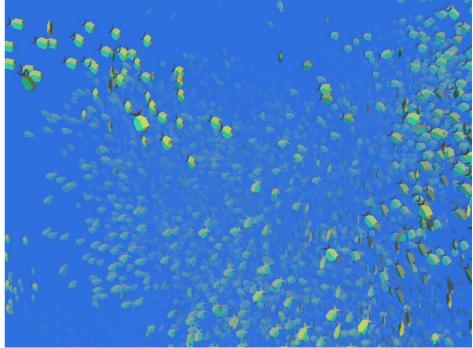
- Check website for new assignments (sheet + start-up kit):
 - cg.ibds.kit.edu/lehre/ws2013/
- Assistance and mentoring
 - Feel free to send us e-mails
 - Drop by our offices



Freestyle Examples

Simulated CT on the GPU Thorsten Gröninger


Path tracing on the GPU Martin Tillmann



Freestyle Examples

Fractal ray-tracing on the GPU Manuel Martin

Simulation of fish schools Alexander Wirth

Questions?